Department of Physics Tripura University (A Central University)

Curricular Plan Academic Year 2015 - 16

Semester	Paper and Topics	Teaching Methodology
Ι	PH-701C: Mathematical Physics: Credit=04 Group A [NLP=14]: Functions of a Complex variable and Complex algebra Group B [NLP=25]: Group Theory.Differential Equations, Green's function, Dirac Delta Function, Group Theory Special Functions: Gamma functions. Bessel functions of first kind. Legendre functions. Associated Legendre functions. Spherical harmonics. Hermite functions. Lagguerre functions. Hypergeometric functions.Integral Transforms: Laplace transform;; Fourier series; Fourier integral and transforms.	Traditional classroom teaching. PDF notes and question banks as well as their hard copies are provided to the students. Hard copies of related chapters from text and reference books are provided to the students.
Ι	PH-703C: Computer Programming & Basic Electronic design practical Credit=04: For my part, Credit=02 Group A Theory: 20 NLP + Practical [NLP=75+75 for two group of students]: Computer Programming LINUX Syntax of GFORTRAN language: With problems from setI to set-IX. Numerical Analysis: Theory: Solution of nonlinear equations; iteration; bisection method; secant method; Newton - Raphson method. Interpolation: Lagrange's interpolation; numerical differentiation, Numerical integration, Riemann, trapezoidal and Simpson's rules; Solution of linear simultaneous equations - Gauss elimination; Gauss - Jordan elimination. Matrix algebra; eigen values and eigenfunctions of matrices.	Traditional classroom teaching. PDF notes and question banks as well as their hard copies are provided to the students. Hard copies of related chapters from text and reference books are provided to the students. Set-I to Set-IX of programming questions and solutions are given in PDF format.
IV	PH-1001C: Condensed Matter Physics: Credit=04 Group A [NLP=25]: Crystal Physics, Interaction of X – rays with matter, The reciprocal lattice. The Laue, powder and rotating crystal methods. Crystal structure factor Point Group. Crystal Defect.Lattice Vibration.Lattice specific heat,Free Electron Theory.	Traditional classroom teaching. PDF notes and question bank as well as their hard copies are provided to the students. Hard copies of related chapters from text and reference books are provided to the students.

	Group B [NLP=25]: Dielectric Functions and Ferroelectric, Optical Processes and Excitons, Band Theory of Solids Magnetic Properties of solid, Superconductivity	
IV	 PH-1004E: Advanced Physics Credit=04: For my part, Credit=01 Group B [NLP=10]: UV-Vis Absorption Spectroscopy, Fluorescence Spectroscopy, FTIR , Brewster Angle Microscopy (BAM), Fluorescence Imaging Microscopy (FIM)), applications of thin films. 	Traditional classroom teaching. PDF notes and question banks as well as their hard copies are provided to the students. Hard copies of related chapters from text and reference books are provided to the students.
IV	PH 1003C: Project work : Credit=06 Project work for 4 th Semester students	One topic is allotted to each student and they investigate the problem on the basis of literature survey and some laboratory work. Finally, they prepare a dissertation on the work done and give a presentation

Prof. Su	urya Chattopadhy	aya	
Semester	Paper	Topics	Teaching Methodology
Ι	PH-702C: Classical Mechanics Credit=04	 Group A [NLP=25]: Review of Newtonian mechanics Lagrangian formulation and its applications Rotating Frame of References Rigid body motion Hamilton's principle and its applications Group B [NLP=25]: Small oscillation in couples systems Hamiltonian formulation and its applications Canonical transformation Hamilton-Jacobi theory Action-angle variables Lagrangian and Hamiltonian formulation of continuous system 	Traditional classroom teaching. PDF notes as well as their hard copies will be provided before each lecture. Hard copies of related chapters from text and reference books will be provided to the students. Question Bank and List of Numerical Problem will also be supplied.
Ι	PH-703C: Computer	Group B [NLP=75+75] for two group of	Instruction manuals, Pin diagrams of different ICs,

	Programming & Basic Electronic design practical Credit=04 For my part, Credit=02	 students]: Construction of power supply (±12 V & +5 V) Design and study of different logic gates with both discrete components and digital ICs (74**). Design and study of different adder and subtractor circuits with ICs. Design and study of different amplifier and filter circuits using OP-AMP(IC-741/536/555) Designing and study of common emitter (CE) amplifier circuit with NPN/PNP transistor. Designing and study of emitter follower (CC) amplifier circuit with NPN/PNP transistor 	Transistors will be provided before commencement of the practical classes. Hard copies of related chapters from text and reference books will be provided to the students. Traditional Classroom mode of teaching will be conducted before each experiment to explain the details of each circuit. Hands-on demonstration of design & study of each circuit will be done by the teacher before allowing students to handle it.
II	PH-802C: Statistical Mechanics Credit=04	 Group A [NLP=25]: Foundations of statistical mechanics Macro & microstates, thermodynamic probability. Classical statistics of ensembles Foundation of quantum statistics Density matrix & its applications Group B [NLP=25]: Statistics of indistinguishable particles Features and applications of BE & FD statistics Fluctuations and transport phenormena Cluster expansion for a classical 	Traditional classroom teaching. PDF notes as well as their hard copies will be provided before each lecture. Hard copies of related chapters from text and reference books will be provided to the students. Question Bank and List of Numerical Problem will also be supplied.

		non-ideal gas Ising model Phase transition 	
III	PH-902C: Atomic & Molecular Physics Credit=04 For my part, Credit=02	 Group B [NLP=25]: Molecular Physics Fundamentals of molecular spectroscopy Microwave spectroscopy Infrared spectroscopy Raman spectroscopy Electronic spectra Mossbauer spectroscopy 	Traditional classroom teaching. PDF notes as well as their hard copies will be provided before each lecture. Hard copies of related chapters from text and reference books will be provided to the students. Question Bank and List of Numerical Problem will also be supplied.
IV	PH-1004E: Advanced Physics Credit=04 For my part, Credit=01	 Group D [NLP=13]: Introductory theoretical chemical physics Approximation methods in quantum mechanics. Pre & post Hartree-Fock approximations Density Functional Theory (DFT) & its applications 	Traditional classroom teaching. PDF notes as well as their hard copies will be provided before each lecture. Hard copies of related chapters from text and reference books will be provided to the students. Question Bank and List of Numerical Problem will also be supplied.
IV	PH 1003C: Project work Credit=06	Project work for 4 th Semester students	One topic will be allotted to each student and they will investigate the problem on the basis of literature survey and some laboratory work. Finally, they will prepare a dissertation on the work done and give a presentation. The assessment will be made on the basis of the dissertation, presentation and viva-voce.

Dr. Sye	d Arshad Hussain		
Semester	Paper	Topics	Teaching Methodology
Ι	PH-701C: Mathematical Physics	Group A [NLP=11]: Matrices And Tensors	Traditional classroom teaching using whiteboard and overhead projector when required. Handout will be provided before each lecture Class note are give through website https://arshadnotes.wordpress.com/matrix/
II	PH-801C: Basic Electronics PH-904C: Advanced Practical – I	Group A [NLP=25]: Bipolar devices, Field-effect transistor, Microwave device, Photonic device, Memory device, Operational Amplifiers (OPAMP) applications Group B [NLP=25]: Analog circuits, Feedback amplifiers, Power circuits and system, Power supply, Communication Electronics. <u>Practical paper [NLP=75]:</u> Experiments based of solid state devices	Traditional classroom teaching using whiteboard and overhead projector when required. Handout will be provided before each lecture Class note are give through website https://arshadnotes.wordpress.com/electronics-i/ Handout will be provided before each practical Tutorial class will be arranged Practical experiments will be demonstrated
III	PH-903C: Atomic & Molecular Spectroscopy PH-1004C: Advanced Practical - III	Group A [NLP=25]: Atomic Spectroscopy, Lasers Practical Paper [NLP=150]: Experiments based of Advanced Electronic Design	Students will perform each experimentsTraditional classroom teaching using whiteboard and overhead projector when required. Handout will be provided before each lectureClass note are give through website https://arshadnotes.wordpress.com/atomic-spectroscopy/Handout will be provided before each practical Tutorial class will be arranged Practical experiments will be demonstrated Students will perform each experiments
IV	PH-1002C: Advanced Electronics	Group A (NLP=14): Analog to Digital Conversion, Simplifying Logic Circuit & Mapping & code conversion	Traditional classroom teaching using whiteboard and overhead projector when required. Handout will be provided before each lecture Class note are give through website

		https://arshadnotes.wordpress.com/electronics-ii/
PH-1004E: Advanced Physics	Group B [NLP=10] Importance of thin films, different thin film preparation techniques: Spin Coating, Langmuir- Blodgett (LB), Layer-by-Layer (LbL) Self Assembly, Atomic Force Microscopy (AFM),	Traditional classroom teaching using whiteboard and overhead projector when required. Demonstration of research laboratory instruments. Handout will be provided before each lecture
	Application of thin films	Class note are give through website https://arshadnotes.wordpress.com/phys-1004e-advance- physics/

Dr. Ani	Dr. Anirban Guha		
Semester	Paper	Topics	Teaching Methodology
	PHYS-805E:	Introduction to 8085 hardware,	Traditional classroom teaching using whiteboard
II	Microprocessor	programming in assembly level	and overhead projector when required.
11	Architecture and	language, practical using microprocessor	
	Programming	kit and simulator[NLP=50]	
	PHYS-901C:	Maxwell's equation, inhomogeneous	Traditional classroom teaching using whiteboard
	Electrodynamics and	wave equations, electrostatic multipole	and overhead projectorwhen required.
III	Plasma Physics	expansion, dielectrics, plasma physics	
111		[NLP=40]	
	PHYS-904C: Advanced	Experiments based of Advanced	Traditional laboratory teaching using whiteboard
	Practical -III	Electronic Design[NLP=150]	and overhead projector when required.
	PH-1002C: Advanced	Digital communication, modulation	Traditional classroom teaching using whiteboard
	Electronics	techniques, fiber optic communication,	and overhead projectorwhen required.
		satellite communication, optoelectronics	
		[NLP=30]	
IV	PHYS 1004C: Project	Experimental works related to electronic	Traditional classroom and laboratory teaching
1 V	Work	design and advanced programming using	using whiteboard and overhead projector when
		open source language [NLP=50]	required.
	PHYS 1004E:	Basics of atmospheric science,	Traditional classroom teaching using whiteboard
	Advanced Physics	instrumentation [NLP=12]	and overhead projector when required.
			Demonstration of research laboratory instruments.

Semester	Paper	Topics	Teaching Methodology
Ι	PH-701C: Mathematical Physics	Group B [NLP=11]: Special functions and Group theory	Traditional classroom teaching Hard copy of class notes and related materials would be provided before each lecture
II	PH-801C: Basic Quantum Mechanics	Group A [NLP=25]: Dirac formalism, unitary operator, Time evolution operator, number operator, annihilation and creation operator and their matrix representation, Unitary transformation, Basis change, Different Picture, symmetries and equation of motionSolving simple harmonic oscillator problem by algebraic method.	Traditional classroom teaching Hard copy of class notes and related materials should be provided before each lecture.
		Group B [NLP=25]: Orbital angular momentum operator, Pauli spin matrices and its eigen- functions as spherical harmonics. Free particle and its partial wave expansion. Time independent perturbation theory, Variational Method and WKB approximation, Anharmonic oscillator.	
II	PH-806E: Astrophysics and Astronomy	Group A [NLP=20]: Magnitude systems, Color index; Different Constellations: Saha's equation; spectral classification; H-R Diagram; X-ray, UV, IR, and Radio Telescope, Photometry and polarimetry,	Traditional classroom teaching Hard copy of class notes and related materials should be provided before each lecture.

		Mechanics: Star formation in Interstellar medium (ISM), Hydrostatic equilibrium, Group B: [NLP-20] Massive stars, White dwarfs, Chandrasekhar limit, Neutron stars and pulsars, Black Holes. Standard Cosmological model, Dark Matter and Dark Energy, Gamma ray bursts, Gravitational Waves. Curved space-time, Einstein's Field equations.	
II	PH-804C: Advanced Practical - II	Practical paper [NLP=75]: Experiments related to detection of radiation, magnetism and solid state physics	Manuals of each experiments along with details experimental procedure of each experiments would be provided. Practical experiments should be demonstrated So that students can perform each experiments.
III	PH-903C: Nuclear Physics and Particle Physics	Group A [NLP=25]: Basic nuclear concepts, Isospin formalism. Nuclear Force and Deuteron Problem, Nucleon-Nucleon scattering, exchange forces, Yukawa interaction, Nuclear Reactions Shell model, magnetic moments and Schmidt lines; Collective model of the nucleus. Different counters and detectors and Group B [NLP-25] Interaction of alpha radiation with matter- Gamma interaction with matter, Mossbauer effect. Gammow's theory; Fermi's theory of	Traditional classroom teaching Hard copy of class notes and related materials should be provided before each lecture

	PH-905E: Advance Quantum mechanics	beta decayElementary Particles Hadrons, Mesonsand leptons, CP and CPT invariance,Quark model.Group A [NLP-25]Space translation operator, Hamiltonianas the generator of time translation.Addition of Angular momentum and	Traditional classroom teaching Hard copy of class notes and related materials should be provided before each lecture.
		 Clebsch Gordon Coefficients. Formal theory scattering amplitude, differential and total cross section, Optical theorem. Born approximation and partial wave analysis. Time dependent perturbation theory: Interaction picture. Adiabatic and Sudden approximation. 	
IV	PH-1001C :	Group B (NLP=12): Magnetic Properties: Diamagnetism. Quantum theory of paramagnetism. Paramagnetic properties of solids. Heisenberg's theory. Saturation magnetization. Magnons. Ferromagnetic and antiferromagnetic systems. Domains. Magnetic bubble domains. Superconductivity: Meissner effect. Heat capacity. Isotope effect. London's equation. BCS theory (qualitative ideas).	Traditional classroom teaching Hard copy of class notes and related materials should be provided before each lecture.
	PH-1004E: Advanced Physics	<u>Group C[NLP=12]:</u> Different nanomaterials and their special properties. Quantum Dots. X-Ray Diffractometer and its principle:	Traditional classroom teaching Hard copy of class notes and related materials should be provided before each lecture.

rization, electron tion of ics and
