Test Booklet Code: B

Tripura University

Suryamaninagar-799022, Tripura (W)

Name of the Examination

Written Test for the post of Assistant Engineer (Civil)

Name of the Candidate:	_
Registration No.	
Roll No.	
Date of Birth (in figure):	
(in word)	
Signature of the Candidate	_
Date :	

Signature of the Superintendent

Signature of the Invigilators

INSTRUCTIONS TO THE CANDIDATES

- This exam is of 120 minutes duration and the Test Booklet cum answer sheet contains 68 questions, 1. All questions are compulsory.
- These 68 questions are divided into four sections (A, B, C and D) as per the details given below; 2.
 - Section A consists of 50 (fifty) multiple-choice questions (four options with a single correct answer) (Question no. -01 to 50). For each correct answer, the candidate will get 1 mark. No negative marking.
 - Section B consists of 10 (Ten) questions (Question no. 51 to 60): Very Short Answer Type Questions (Answer in one word/one sentence) = 10 Questions (2 marks each)
 - iii. Section C consists of 05 (five) questions (Question no. 61 to 65) Short Answer Type Questions (Answer within 50 words) (3 marks each)
 - iv. Section D consists of 03 (Three) questions (Question no. 66 to 68) Descriptive Answer Type Questions (Answer within 100 words) (5 marks each)
- Maximum marks are 100. 3.
- Use a Blue/Black ballpoint Pen (as provided by the Centre) only for writing particulars on this page/marking answers on the Test Booklet cum Answer Sheet.
- Rough work is to be done in the space provided for this purpose in the Test Booklet only. No 5. additional sheets would be provided.
- On completion of the exam, the candidate must hand over the Test Booklet cum Answer Sheet to the Invigilator before leaving the room/hall.
- The candidates should ensure that the Test Booklet cum Answer Sheet is not folded. Do not make any stray marks on it. Do not write your Roll No. anywhere else except in the specified space in the Test Booklet cum Answer Sheet. The use of white fluid for correction is NOT permissible on
- Each candidate must show on-demand his/her Admit Card to the Invigilator. 8.
- No candidate, without special permission of the Centre Superintendent or Invigilator, would leave his/her seat.
- 10. Use of an Electronic/Manual Calculator or Smart watch or any other electronic gadget is strongly prohibited.
- 11. The candidates are governed by all Rules and Regulations of the examination with regard to their conduct in the Examination Room/Hall. All cases of unfair means will be dealt with as per Rules and Regulations of this examination.
- 12. No part of the Test Booklet cum Answer Sheet shall be detached under any circumstances.
- 13. The candidates will write the Correct Test Booklet Number and Code as given in the Test Booklet cum Answer Sheet in the Attendance Sheet.

Section - A

Note: Attempt all MCQ type questions, each question carries 1 mark. Please tick \boxtimes anyone in the box –

1.	A soil sample has a bulk unit weight.	ght o	f 18 kN/m³ a	nd a w	ater content	of 15%
	a) 15.6 kN/m³		b) 16.2 kN/m	3		
	c) 17.4 kN/m ³		d) 18.8 kN/m	3		
2.	A soil sample has a liquid limit of plasticity index.	40%	and a plastic	limit o	f 20%. Calc	ılate the
	a) 10 b) 20		c) 30		d) 40	
3.	A clay layer 5 m thick has a coefficient is single drainage, how long will it					If there
	a) 3.1 years b) 2.2 years		c) 1.5 years		d) 0.78 year	s
4.	A saturated soil sample has a voi Calculate the bulk unit weight of th	id rat	io of 0.65 an in kN/m³.	d a spe	cific gravity	of 2.7.
	a) 9.61 b) 19.92		c) 20.1		d) 21.8	
5.	What is the primary purpose of con	npact	ion in soil eng	gineering	g?	
	a) Increase the shear strength		b) Increase th			
	c) Increase the permeability		d) Decrease t	he unit	weight	
6.	A fluid flows through a pipe with a is the Reynolds number if the kinen	diam	neter of 20 cm viscosity of the	at a vel ne fluid	ocity of 3 m is 1 x 10 ⁻⁶ m	/s. What ² /s?
	a) 7.2 x 10 ⁵		b) 6.0 x 10 ⁷			
	c) 4.8 x 10 ⁵		d) 3.6 x 10 ⁷	` 5		

7.	Which of the following is the correct definition of Reynolds number?						
	(a) Ratio of inertial forces to g	gravitationa	l forces			Section 1999	
	(b) Ratio of viscous forces to	gravitation	al forces				
	(c) Ratio of inertial forces to v	viscous for	ces			The State of the S	
	(d) Ratio of viscous forces to	elastic forc	es				
8.	Which of the following is not	an assump	tion in Berr	noulli's ec	quation?		
	(a) Flow is steady						
	(b) Flow is incompressible						
	(c) Flow is along a streamline						
	(d) Flow is rotational						
9. 10.	Water flows through a Ventudiameter of 0.1 m. If the inlet (a) 6 m/s (b) 9 m/s A tank discharges water through height of the water in the tank	velocity is	3 m/s, calcu (c) 12 m/s	ulate the v	elocity at the	e throat.	
	(a) 0.5 m (b) 3 m		(c) 2 m		(d) 1 m		
11.	A fluid with viscosity 0.001 I 500s-1. Calculate the shear st		hrough a pi	ipe with a	velocity gra	adient of	
	(a) 0.25 Pa		(b) 1 Pa				
	(c) 0.05 Pa		(d) 0.5 Pa				
12.	Which of the following treatm	ent process	removes h	ardness f	rom water?		
	(a) Sedimentation		(b) Coagu	lation			
	(c) Lime-soda process		(d) Filtrati	ion			

13.	3. What is the acceptable limit of nitrate in drinking water as per BIS standards?					
	(a) 10 mg/L		(b) 25 mg/L			
	(c) 35 mg/L					
			(d) 45 mg/L			
14.	Determine the organic loading rate of 500 m3/d, influent BO	ng rate (in lead)	g/M3/d) for a trickling filter	with a flow		
	(a) 0.5 (b) 1.0		(c) 2.0 (d) 3.0			
15.	Determine the free-flow speed and a flow rate of 1440 vehic	d of a vehicl les/hour.	e with a spacing of 25 m betwe	een vehicles		
	(a) 50 km/h		(b) 36 km/h			
	(c) 72 km/h		(d) 90 km/h			
16.	Calculate the maximum rate of design speed of 60 km/h, cons			300 m and		
	(a) 0.03%		(b) 0.05%			
	(c) 3.56%		(d) 6.30%			
17.	The range of camber to be profor light rainfall areas, as per			te surfacing		
	(a) 1.5 to 1.7%		(b) 1.7 to 2%			
	(c) 2 to 2.5%		(d) 2.5 to 3%			
	A signalized intersection has for one approach is 30 seconds capacity of the approach (in v	s, and the flo	ow rate is 1000 vehicles/hour.	green time What is the		
	(a) 333.33		(b) 666.66			
	(c) 6000		(d) 3000			

19	. In the case of a closed traverse, the sum of interior angles should be:	
	(a) (n-2)×180°	
20.	In an old map, a line PQ was drawn to a magnetic bearing of 8°30', the nation at that time being 2° West. If the present magnetic declination is the line should be set now to what magnetic bearing?	nagnetic 14°30',
	(a) 8° (b) 15° (c) 25° (d) 356°	
21.	The bench mark (B.M.) was set up on ground level during a construction we elevation of the bench mark was 54.200 m. The staff was set up at point A read 1.760m. Further the staff was set inverted at point B on the underside ceiling slab, which read 1.440m. The elevation of the underside of ceiling states be equal to	A which e of the
	(a) 54.52 m (b) 51.0 m (c) 57.40 m (d) 53.88 m	
22.	Which of the given characteristics of contours is incorrect?	
	(a) Contour lines of different elevations can unite to form one line only in case of a vertical cliff.	
	(b) A contour passing through any point is perpendicular to the line of steepest slope at that point.	
	(c) A closed contour line with one or more higher ones inside it represents a hill.	
	(d) Contour lines cross a water shed at right angles forming curves of V shape around it with the point of the "V" pointing downstream.	
23.	In stone masonry, the vertical joints in successive courses should ideally:	
	(a) Be aligned to save material	
	(b) Be staggered to avoid continuous vertical joints	
	(c) Align perfectly to form a grid-like pattern	
	(d) Form a continuous line for aesthetic purposes	

24.	4. The foundation type most suitable for soil having low bearing capacity is:					
	(a) Pile foundation		(b) Strip foundation			
	(c) Strap footing		(d) Shallow foundat	ion		
25.	The primary purpose of expan	sion joints	in buildings is to:			
	(a) Prevent water ingress					
	(b) Absorb movements due to	temperatur	e changes			
	(c) Improve the aesthetic appe	arance				
	(d) Provide resistance against	wind loads				
26.	The radius of the Mohr's circle "q" shall be equal to	when the s	stress element is unde	r simple she	ear stress	
	(a) q		(b) square root of q			
	(c) q/2		(d) zero			
27.	In a simply supported beam su span, the following characteris					
	(a) shear force		(b) bending moment	t		
	(c) deflection		(d) all of these			
28.	For a triangular section of ba	se width b	and height h, the ma	aximum she	ar stress	
	(a) h/3 from base		(b) 2h/3 from base			
	(c) 2h/5 from base		(d) h/2 from base			
29.	In a thin cylindrical shell subj circumferential stress to magn	ected to intitude of lor	ternal pressure, the rangitudinal stress is equ	ntio of magi ual to	nitude of	
	(a) 0.5 (b) 1		(c) 1.5	(d) 2		

30. A cantilever beam of length L is subjected to applied moment in at the free of which of the following set of values of shear force and bending moment in cantilever will be correct?				
	(a) Zero shear force and bending	ng moment	M throughout span	
	(b) M/L shear force and zero b	ending mo	ment throughout span	
	(c) Both shear force and bendi	ng moment	t will be zero throughout span	
	(d) M/(2L) shear force through from zero at free end to M	out the sparat the fixed	n and bending moment varying l end of cantilever	
31.	Which one of the following ste distribution method?	eps is not c	orrect in the application of the n	noment
	(a) The distribution factors are	first comp	outed	
			ked and fixed end moments are eparate from every other span	
	100 Miles (100 Miles (acent spans	s of the corresponding support.	
	The second secon		nent to each adjacent span, one is carried over to the other end	
32.			'A' and length L is subjected to ne material of bar is E, the strain	
	(a) PL/2AE		(b) PL/4AE	
	(c) P ² L/2AE		(d) $P^2L/4AE$	
33.			ric parabolic 2 hinged arch of sparity w per unit length over its entited	
	(a) $wL^2/4y$		(b) $wL^2 / 8y$	
	(c) $wL^2 / 12y$		(d) $wL^2 / 16y$	

34.	. The static indeterminacy of the given beam is equal to:					
	(a) 3 (b) 4 (c) 5 (d) 6					
35.	Which of the following is not a force method of analysis of structures?					
	(a) Flexibility method					
	(b) Method od consistent deformation					
	(c) Kani's method					
	(d) Method of Strain energy					
36.	When the load line is in the plane of bolted connection in an eccentrically bolted bracket joint in a steel structure, the force due to direct load in one bound to the KN, the force due to moment in the critical bolt is 80 KN, the angle between direction of the two forces is 30 degree, then the resultant force in the bolt equal to:	oolt is 50 ween the				
	(a) 94.34 KN					
	(b) 117.90 KN					
	(b) 117.90 KN (c) 113.58 KN					
37.	(c) 113.58 KN	orces, to				
37.	(c) 113.58 KN (d) 125.81 KN If an end plate connection in a steel structure fails in the check for prying for	orces, to				
37.	(c) 113.58 KN (d) 125.81 KN If an end plate connection in a steel structure fails in the check for prying famake it safe, you can resort to which one of the following options?	orces, to				
37.	(c) 113.58 KN (d) 125.81 KN If an end plate connection in a steel structure fails in the check for prying famake it safe, you can resort to which one of the following options? (a) Decrease the thickness of end plate	orces, to				

38.	 The block shear strength of a single angle section tension m bolted joint does not depend upon 	ember conne	cted by
	(a) Spacing of bolts		
	(b) End distance of bolts		
	(c) Diameter of bolts		
	(d) Grade of bolts		
39.	2. A steel section can be classified as a compact section if		
	(a) It undergoes local buckling before yield point		
	(b) It undergoes local buckling post yield but before the for first plastic hinge	ormation of	
	(c) It has no local buckling till the formation of first plasti undergoes local buckling before converting into a mecha		
	(d) It undergoes no local buckling till sufficient plastic hinges to convert it into a mechanism	are formed	
40.	A built up I section has to be made of 16 mm thick plates on a beam. The beam section fails in check for shear. What can increase the shear strength of the section?		
	(a) Increase the thickness of flange		
	(b) Reduce the width of flange		
	(c) Increase the depth of web		
	(d) Increase the width of flange		
41.	. A building is subjected to a dead load of 80 KN, live load of 150 KN and earthquake load of 180KN. As per IS: 456-200 the building in KN is		
	(a) 285 KN (b) 520 KN		
	(c) 390 KN (d) 444 KN		

42.	2. A doubly reinforced concrete beam has top effective cover of 50mm. The depth of neutral axis is 200mm. Effective depth is 450 mm. As per IS: 456-2000, the maximum strain in concrete at the level of compression steel is equal to:						
	(a) 0.0018		(b) 0.0026				
	(c) 0.0039		(d) 0.0042				
43.	43. Main reinforcement of a RC slab consists of 10 mm bars at 10 cm spacing. If it is desired to replace 10 mm bars by 12 mm bars, then spacing of 12 mm bars should be equal to:						
	(a) 12 cm		(b) 13.2 cr	n			
	(c) 14.4 cm		(d) 16 cm				
44.	The minimum reinforcement p depth 200 mm and effective c						
	(a) 204 mm ²		(b) 240 mi	m^2			
	(c) 255 mm ²		(d) 300 mr	m ²			
45.	Effective width of T beams is	an imagina	ry width ov	er which			
	(a) Compressive stress is assu	med to be u	ıniform				
	(b) Compressive stress is ass minimum value at ends an				tion with		
	(c) Tensile stress is assumed t	to be uniform	m				
	(d) Tensile stress is assumed to be of parabolic variation with minimum value at ends and maximum at the centre.						
46.	Maximum possible value of co	ompaction f	actor to dete	ermine the	workability	of fresh	
	(a) 2 (b) 1		(c) 0.8		(d) 0.5		

47.	Which concrete		owing is no	ot an effect	of air enti	rainment	on the pro	perties of
	(a) Incre	eased resis	ance to free	ezing and th	nawing			
	(b) Improvement in workability							
	(c) Incre	ease in resi	stance agair	nst chemica	ıl attack			
	(d) Incre	ease in stre	ngth					
48.		s the allo		sture conto	ent in wel	l season	ed timber	used for
	(a) 4-8%	6			(b) 10-12%	6		
	(c) 15-2	0%			(d) 25-30%	6		
49.	is 10 da	ys, and the	e most likel			is the ex	ays, pessim	
	(c) 7 day	ys			(d) 6 days			
	continer		d into how				016, the Incose of calcudate (d) 5	
TO	ΓAL NU	MBER OF	MCQs AT	TEMPTED				
IN F	FIGURE							
IN V	WORDS							

ANSWERS AND SOLUTIONS TEST PAPER CIVIL ENGINEERING

PART: A

- 1. a
- 2. b
- 3. d
- 4. b
- 5. a
- 6. b
- 7. c
- 8. d
- 9. c
- 10. d
- 11. d
- 12. c
- 13. d
- 14. b
- 15. b
- 16. d
- 17. b
- 18. a
- 19. a
- 20. d
- 21. c
- 22. d
- 23. b
- 24. d
- 25. b
- 26. a
- 27. a
- 28. d
- 29. d
- 30. a
- 31. b
- 32. c
- 33. b
- 34. d
- 35. c
- 36. d
- 37. c
- 38. d
- 39. c
- 40. c 41. d
- 42. b
- 43. c
- 44. a
- 45. a

46. b

47. d

48. b

49. c

50. c