Department of Physics Tripura University (A Central University)

Curricular Plan

Academic Year 2019 - 20

Prof. Debajyoti Bhattacharjee

C	Description of The star	T
Semester	Paper and Topics	Teaching Methodology
Ι	 PH-701C: Mathematical Physics: Credit=04 Group A [NLP=14]: Functions of a Complex variable and Complex algebra Group B [NLP=25]: Group Theory. Differential Equations, Green's function, Dirac Delta Function, Group Theory Special Functions: Gamma functions. Bessel functions of first kind. Legendre functions. Associated Legendre functions. Spherical harmonics. Hermite functions. Lagguerre functions. Hypergeometric functions. Integral Transforms: Laplace transform;; Fourier series; Fourier integral and transforms. 	Traditional classroom teaching. PDF notes and question banks as well as their hard copies are provided to the students. Hard copies of related chapters from text and reference books are provided to the students.
Ι	PH-703C: Computer Programming & Basic Electronic design practical Credit=04: For my part, Credit=02 Group A Theory: 20 NLP + Practical [NLP=75+75 for two group of students]: Computer Programming LINUX Syntax of GFORTRAN language: With problems from setI to set-IX. Numerical Analysis: Theory: Solution of nonlinear equations; iteration; bisection method; secant method; Newton - Raphson method. Interpolation: Lagrange's interpolation; numerical differentiation, Numerical integration, Riemann, trapezoidal and Simpson's rules; Solution of linear simultaneous equations - Gauss elimination; Gauss - Jordan elimination. Matrix algebra; eigen values and eigenfunctions of matrices.	Traditional classroom teaching. PDF notes and question banks as well as their hard copies are provided to the students. Hard copies of related chapters from text and reference books are provided to the students. Set-I to Set-IX of programming questions and solutions are given in PDF format.
IV	PH-1001C: Condensed Matter Physics: Credit=04 Group A [NLP=25]: Crystal Physics, Interaction of X – rays with matter, The reciprocal lattice. The Laue, powder and rotating crystal methods. Crystal structure factor Point Group. Crystal Defect. Lattice Vibration. Lattice specific heat, Free Electron Theory. Group B [NLP=25]: Dielectric Functions and Ferroelectric, Optical Processes and Excitons, Band Theory of Solids Magnetic Properties of solid, Superconductivity	Traditional classroom teaching. PDF notes and question banks as well as their hard copies are provided to the students. Hard copies of related chapters from text and reference books are provided to the students.
IV	PH-1004E: Advanced Physics	Traditional classroom teaching.

	Credit=04: For my part, Credit=01 Group B [NLP=10]: UV-Vis Absorption Spectroscopy, Fluorescence Spectroscopy, FTIR, Brewster Angle Microscopy (BAM), Fluorescence Imaging Microscopy (FIM)), applications of thin films.	PDF notes and question banks as well as their hard copies are provided to the students. Hard copies of related chapters from text and reference books are provided to the students.
IV	PH 1003C: Project work : Credit=06 Project work for 4 th Semester students	One topic is allotted to each student and they investigate the problem on the basis of literature survey and some laboratory work. Finally, they prepare a dissertation on the work done and give a presentation

Prof. Sury	Prof. Surya Chattopadhyaya			
Semester	Paper	Topics	Teaching Methodology	
Ι	PH-702C: Classical Mechanics Credit=04	 Group A [NLP=25]: Review of Newtonian mechanics Lagrangian formulation and its applications Rotating Frame of References Rigid body motion Hamilton's principle and its applications Group B [NLP=25]: Small oscillation in couples systems Hamiltonian formulation and its applications Canonical transformation Hamilton-Jacobi theory Action-angle variables Lagrangian and Hamiltonian formulation of continuous system 	Traditional classroom teaching. PDF notes as well as their hard copies will be provided before each lecture. Hard copies of related chapters from text and reference books will be provided to the students. Question Bank and List of Numerical Problem will also be supplied.	

Ι	PH-703C: Computer Programming & Basic Electronic design practical Credit=04 For my part, Credit=02	 Group B [NLP=75+75] for two group of students]: Construction of power supply (±12 V & +5 V) Design and study of different logic gates with both discrete components and digital ICs (74**). Design and study of different adder and subtractor circuits with ICs. Design and study of different amplifier and filter circuits using OP-AMP(IC-741/536/555) Designing and study of common emitter (CE) amplifier circuit with NPN/PNP transistor. Designing and study of emitter follower (CC) amplifier circuit with NPN/PNP transistor 	Instruction manuals, Pin diagrams of different ICs, Transistors will be provided before commencement of the practical classes. Hard copies of related chapters from text and reference books will be provided to the students. Traditional Classroom mode of teaching will be conducted before each experiment to explain the details of each circuit. Hands-on demonstration of design & study of each circuit will be done by the teacher before allowing students to handle it.
II	PH-802C: Statistical Mechanics Credit=04	 Group A [NLP=25]: Foundations of statistical mechanics Macro & microstates, thermodynamic probability. Classical statistics of ensembles Foundation of quantum statistics Density matrix & its applications Group B [NLP=25]: Statistics of indistinguishable particles Features and applications of BE & FD statistics Fluctuations and transport phenormena 	Traditional classroom teaching. PDF notes as well as their hard copies will be provided before each lecture. Hard copies of related chapters from text and reference books will be provided to the students. Question Bank and List of Numerical Problem will also be supplied.

		 Cluster expansion for a classical non-ideal gas Ising model Phase transition 	
III	PH-902C: Atomic & Molecular Physics Credit=04 For my part, Credit=02	 Group B [NLP=25]: Molecular Physics Fundamentals of molecular spectroscopy Microwave spectroscopy Infrared spectroscopy Raman spectroscopy Electronic spectra Mossbauer spectroscopy 	Traditional classroom teaching. PDF notes as well as their hard copies will be provided before each lecture. Hard copies of related chapters from text and reference books will be provided to the students. Question Bank and List of Numerical Problem will also be supplied.
IV	PH-1004E: Advanced Physics Credit=04 For my part, Credit=01	 Group B [NLP=13]: Introductory theoretical chemical physics Approximation methods in quantum mechanics. Pre & post Hartree-Fock approximations. Density Functional Theory (DFT) & its applications 	Traditional classroom teaching. PDF notes as well as their hard copies will be provided before each lecture. Hard copies of related chapters from text and reference books will be provided to the students. Question Bank and List of Numerical Problem will also be supplied.
IV	PH 1003C: Project work Credit=06	Project work for 4 th Semester students	One topic will be allotted to each student and they will investigate the problem on the basis of literature survey and some laboratory work. Finally, they will prepare a dissertation on the work done and give a presentation. The assessment will be made on the basis of the dissertation, presentation and viva-voce.

Prof. Sy	Prof. Syed Arshad Hussain			
Semester	Paper	Topics	Teaching Methodology	
Ι	PH-701C: Mathematical Physics	Group A [NLP=11]: Matrices And Tensors	Traditional classroom teaching using whiteboard and overhead projector when required. In addition, online teaching using Google Meet and Tripura University LMS during COVID-19 period. Handout will be provided before each lecture Class note are give through website https://arshadnotes.wordpress.com/matrix/	
II	PH-801C: Basic Electronics	Group A [NLP=25]: Bipolar devices, Field-effect transistor, Microwave device, Photonic device, Memory device, Operational Amplifiers (OPAMP) applications Group B [NLP=25]: Analog circuits, Feedback amplifiers, Power circuits and system, Power supply, Communication Electronics.	Traditional classroom teaching using whiteboard and overhead projector when required. In addition, online teaching using Google Meet and Tripura University LMS during COVID-19 period. Handout will be provided before each lecture Class note are give through website https://arshadnotes.wordpress.com/electronics-i/	
	PH-904C: Advanced Practical – I	Practical paper [NLP=75]: Experiments based of solid state devices	 Handout will be provided before each practical Tutorial class will be arranged. In addition, online teaching using Google Meet and Tripura University LMS during COVID-19 period. Practical experiments will be demonstrated Students will perform each experiments 	
III	PH-903C: Atomic & Molecular Spectroscopy	Group A [NLP=25]: Atomic Spectroscopy, Lasers	Traditional classroom teaching using whiteboard and overhead projector when required. In addition, online teaching using Google Meet and Tripura University LMS during COVID-19 period. Handout will be provided before each lecture Class note are give through website https://arshadnotes.wordpress.com/atomic-spectroscopy/	
	PH-1004C: Advanced Practical - III	Practical Paper [NLP=150]: Experiments based of Advanced Electronic Design	Handout will be provided before each practical Tutorial class will be arranged. In addition, online teaching using Google Meet and Tripura University LMS during	

	PH-1002C: Advanced Electronics	Group A (NLP=14): Analog to Digital Conversion, Simplifying Logic Circuit & Mapping & code conversion	COVID-19 period.Practical experiments will be demonstratedStudents will perform each experimentsTraditional classroom teaching using whiteboard and overheadprojector when required. In addition, online teaching usingGoogle Meet and Tripura University LMS during COVID-19period. Handout will be provided before each lectureClass note are give through website
IV	PH-1004E: Advanced Physics	Group B [NLP=10] Importance of thin films, different thin film preparation techniques: Spin Coating, Langmuir-Blodgett (LB), Layer- by-Layer (LbL) Self Assembly, Atomic Force Microscopy (AFM), Application of thin films	https://arshadnotes.wordpress.com/electronics-ii/ Traditional classroom teaching using whiteboard and overhead projector when required. In addition, online teaching using Google Meet and Tripura University LMS during COVID-19 period. Demonstration of research laboratory instruments. Handout will be provided before each lecture Class note are give through website https://arshadnotes.wordpress.com/phys-1004e-advance- physics/

Dr Anirba	Dr Anirban Guha			
Semester	Paper	Topics	Teaching Methodology	
	PHYS-805E:	Introduction to 8085 hardware,	Traditional classroom teaching using whiteboard and	
II	Microprocessor	programming in assembly level	overhead projector when required. In addition, online	
11	Architecture and	language, practical using microprocessor	teaching using Google Meet and Tripura University LMS	
	Programming	kit and simulator [NLP=50]	during COVID-19 period.	
	PHYS-901C:	Maxwell's equation, inhomogeneous	Traditional classroom teaching using whiteboard and	
	Electrodynamics and	wave equations, electrostatic multipole	overhead projectorwhen required.In addition, online	
	Plasma Physics	expansion, dielectrics, plasma physics	teaching using Google Meet and Tripura University LMS	
III		[NLP=40]	during COVID-19 period.	
	PHYS-904C: Advanced	Experiments based of Advanced	Traditional laboratory teaching using whiteboard and	
	Practical -III	Electronic Design[NLP=150]	overhead projector when required. In addition, online	
			teaching using Google Meet and Tripura University LMS	
			during COVID-19 period.	

	PH-1002C: Advanced	Digital communication, modulation	Traditional classroom teaching using whiteboard and
	Electronics	techniques, fiber optic communication,	overhead projectorwhen required. In addition, online
		satellite communication, optoelectronics	teaching using Google Meet and Tripura University LMS
		[NLP=30]	during COVID-19 period.
	PHYS 1004C: Project	Experimental works related to electronic	Traditional classroom and laboratory teaching using
	Work	design and advanced programming using	whiteboard and overhead projector when required.In
IV		open source language [NLP=50]	addition, online teaching using Google Meet and Tripura
			University LMS during COVID-19 period.
	PHYS 1004E:	Basics of atmospheric science,	Traditional classroom teaching using whiteboard and
	Advanced Physics	instrumentation [NLP=12]	overhead projector when required. Demonstration of
			research laboratory instruments. In addition, online teaching
			using Google Meet and Tripura University LMS during
			COVID-19 period.

Dr Rata	Dr Ratan Das			
Semester	Paper	Topics	Teaching Methodology	
I	PH-701C: Mathematical Physics	Group B [NLP=11]: Special functions and Group theory	Traditional classroom teaching Hard copy of class notes and related materials would be provided before each lecture	
II	PH-801C: Basic Quantum Mechanics	Group A [NLP=25]: Dirac formalism, unitary operator, Time evolution operator, number operator, annihilation and creation operator and their matrix representation, Unitary transformation, Basis change, Different Picture, symmetries and equation of motionSolving simple harmonic oscillator problem by algebraic method. Group B [NLP=25]: Orbital angular momentum operator, Pauli spin matrices and its eigen-	Online teaching Soft copy of class notes and related materials should be provided before each lecture. Online classes and teaching would be arranged using different ICT based tools such as google meet, recorded video lectures, online repositories. Various tools such as google form, google doc etc. would be used for the purpose of teaching	

		functions as spherical harmonics. Free particle and its partial wave expansion. Time independent perturbation theory, Variational Method and WKB approximation, Anharmonic oscillator.	
II	PH-804C: Advanced Practical - II	Practical paper [NLP=75]: Experiments related to detection of radiation, magnetism and solid state physics	Virtual lab would be used for the practical purpose
III	PH-903C: Nuclear Physics and Particle Physics	Group A [NLP=25]:Basic nuclear concepts, Isospinformalism.Nuclear Force and Deuteron Problem,Nucleon-Nucleon scattering, exchangeforces, Yukawa interaction, NuclearReactionsShell model, magnetic moments andSchmidt lines; Collective model of thenucleus.Different counters and detectors andGroup B [NLP-25]Interaction of alpha radiation withmatter- Gamma interaction with matter,Mossbauer effect.Gammow's theory; Fermi's theory ofbeta decayElementary Particles Hadrons, Mesonsand leptons, CP and CPT invariance,Quark model.	Online teaching Soft copy of class notes and related materials should be provided before each lecture. Online classes and teaching would be arranged using different ICT based tools such as google meet, recorded video lectures, online repositories. Various tools such as google form, google doc etc. would be used for the purpose of teaching
	PH-905E: Advance	Group A [NLP-25] Space translation operator, Hamiltonian	Traditional classroom teaching along with online teaching Hard copy of class notes and related materials should be
	Quantum mechanics	Space translation operator, Hamiltonian	Hard copy of class notes and related materials should be

		as the generator of time translation. Addition of Angular momentum and Clebsch Gordon Coefficients. Formal theory scattering amplitude, differential and total cross section, Optical theorem. Born approximation and partial wave analysis. Time dependent perturbation theory: Interaction picture. Adiabatic and Sudden approximation.	 provided before each lecture. Soft copy of class notes and related materials should be provided before each lecture. Online classes and teaching would be arranged using different ICT based tools such as google meet, recorded video lectures, online repositories. Various tools such as google form, google doc etc. would be used for the purpose of teaching
IV	PH-1001C :	Group B (NLP=12): Magnetic Properties: Diamagnetism. Quantum theory of paramagnetism. Paramagnetic properties of solids. Heisenberg's theory. Saturation magnetization. Magnons. Ferromagnetic and antiferromagnetic systems. Domains. Magnetic bubble domains. Superconductivity: Meissner effect. Heat capacity. Isotope effect. London's equation. BCS theory (qualitative ideas).	Traditional classroom teaching along with online teaching Hard copy as well as soft copy of class notes and related materials should be provided before each lecture. Online classes and teaching would be arranged using different ICT based tools such as google meet, recorded video lectures, online repositories. Various tools such as google form, google doc etc. would be used for the purpose of teaching
	PH-1004E: Advanced Physics	Group C[NLP=12]: Different nanomaterials and their special properties. Quantum Dots. X-Ray Diffractometer and its principle: Structural Characterization, Morphological analysis by electron microscopy. Different Application of nanomaterials including photonics and plasmonics.	different ICT based tools such as google meet, recorded